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Abstract— Tuning on instruction-following data has been
shown to enhance the capabilities and controllability of language
models, but the idea is less explored in the robotic field. In
this work, we introduce KOSMOS-E, a Multimodal Large
Language Model (MLLM) that leverages instruction-following
robotic grasping data to enhance capabilities for precise and
intricate robotic grasping maneuvers. To achieve this, we craft
a large-scale instruction-following robotic grasping dataset,
termed INSTRUCT-GRASP, primarily comprising two aspects:
(i) grasp a single object following varying levels of granularity
descriptions, e.g., different angles and aspects, and (ii) grasp
a specific object within a multi-object environment following
specific attributes, e.g., color and shape. Extensive experiments
show the effectiveness of KOSMOS-E on robotic grasping tasks
across a variety of environments.

I. INTRODUCTION

The field of large pretrained models, e.g., Large Language
Models (LLMs) and Multimodal Large Language Models
(MLLMs) has witnessed remarkable progress on various
tasks [1], [2], [3], [4], e.g., reasoning [5], [6], planning [7],
[8], code generation [9], [10] and open-vocabulary visual
interactions [11], [12], [13]. Such capabilities would be
tremendously useful for generalist robots that must perform
a variety of tasks in real-world environments. Recently, large
pretrained models are introduced to enhance performance
across various robotic tasks, e.g., robotic manipulation [14],
[15], [16], reasoning [17], [18] and grasping [19].

Concurrently, as instruction-tuning has been validated
as an effective technique to enhance the capabilities and
controllability of large pretrained models [20], [21], attempts
have been made to leverage the instruction-following ability
of large pre-trained models for robotic tasks and showed
promising results [14], [17]. Focusing on the robotic grasping
task, the prior work, RT-Grasp [22] training MLLMs on
instruction data to predicting adaptable numerical grasping
informed by reasoned strategies, thus efficiently utilize the
reasoning capability of MLLMs and show a better grasping
performance than non-instruction MLLMs.

Despite the progress, there remains a question about
how to use instruction data to enable embodied agent
to physically grasp in the complex real world, and the
capability of embodied vision-language models to devise
executable programs is still largely uncharted territory. To
empower robotic grasping models with instruction-following
capabilities, we first leveraged GPT-4 Vision to construct
a large-scale robotic grasping instruction dataset, termed
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as INSTRUCT-GRASP. This dataset encompasses a diverse
array of visual scenes paired with complex, fine-grained
instructions, meticulously tailored to train and assess the
reasoning and grasping capabilities of robotic systems in
cluttered environments. Specifically, as shown in Figure 2,
we design different fine-grained instruction to handle different
scenes.

Based on INSTRUCT-GRASP, we introduce KOSMOS-E, a
MLLM training on INSTRUCT-GRASP that shows a better
grasping ability in complex environment. Figure 1 illustrates
how KOSMOS-E integrates an agent’s visual perspective
to devise precise robot action (grasping point and rotation
angle) and yield accurate grasping in complex environment by
following textual input instructions. To validate the efficacy of
KOSMOS-E, we construct expensive experiments on the grasp
benchmarks and show that KOSMOS-E not only achieves bet-
ter performance compared to state-of-the-art (SOTA) robotic
grasping models, but also enable significant improvements to
generalization over objects, scenes, and exhibit a breadth of
emergent instruction-following abilities.

In sum, our key contributions include:
• We construct INSTRUCT-GRASP, a large-scale fine-

grained robotic grasping instruction dataset, which
contains multiple kinds of instruction for both single
and multi object scenes.

• We propose KOSMOS-E, a multimodal large language
model training on INSTRUCT-GRASP, demonstrating a
strong instruction-following ability acting as generaliz-
able and semantically aware robotic grasping policies.

• We conduct extensive experiments on multiple bench-
marks and show that our proposed KOSMOS-E trained
with INSTRUCT-GRASP achieves competitive or supe-
rior performance compared to SOTA robotic grasping
models.

II. CONSTRUCTION OF INSTRUCT-GRASP

The community has witnessed a surge in the amount of
public grasping data, such as Cornell grasping dataset [23]
and Jacquard grasping dataset [24]. However, the available
volume of instruction-following grasping data is limited,
partially because the process for creating such data is time-
consuming and not well-defined. To address this issue, we
introduce INSTRUCT-GRASP, a large-scale robotic grasping
instruction dataset, which is created based on Cornell grasping
dataset [23]. Specifically, inspired by the success of recent
GPT models in text-annotation tasks, we utilize GPT-4
Vision for grasping instruction-following data collection. The
construction pipeline is shown in Figure 2.



Instruction:

KOSMOS-E: Multimodal Large Language Model 

Robotic Grasping

Vision Encoder

Single Object: Grasp the [Specific Angle or Part] of this object. Grasp center point coordinate [MASK], 
Grasp rotation angle in radians: [MASK].

Robot Action

Center point [x, y]: [0.68, 0.39]

Rotation angle 𝜽: [25 ̊ ] 

[x, y， ]𝜽

De-Tokenizer

Multi Object: Grasp a [Specific Object, e.g., Shape] . Grasp center point coordinate [MASK], Grasp rotation 
angle in radians: [MASK].

Grasp a specific object 
among multi objects

Grasp the [white] object
Grasp the object for [scooping food]

Grasp a specific part or 
angle of an object

Grasp the [head] of the spoon 
Grasp the spoon with a rotation angle of [38 ̊ ] 

Deployment

Fig. 1: KOSMOS-E is a multimodal large language model that has new capabilities of robotic grasping, which can understand
multimodal input and follow different instructions to generate a numerical grasp pose prediction (grasp center point [x, y]
and rotation angle θ), guiding the robot to accurately grasp in both single object and multi-object scenes.

A. Data Augmentation

The Cornell grasping dataset [23] consists of 885 RGB-D
images (640 × 480 px) of 240 distinct objects, with 5,110
human-labelled positive and 2,909 negative grasps. Given the
relatively limited number of data, we performed extensive
data augmentation. Firstly, the images are center cropped to
obtain a 351 × 351 region. Secondly, the cropped image
is randomly rotated between 0 to 360 degree. Thirdly, the
rotated image is randomly translated in x and y direction
by up to 40 pixels. Finally, the translated image is cropped
to 224 × 224 in size. Consequently, we have INSTRUCT-
GRASP-NON dataset, with 250k grasp examples. And only
positively labeled grasps from the dataset were used.

B. Grasp Instruction Generation

After data augmentation, we generate detailed instruction
for each objection and grasp. We categorize the instructions
into three types: (1) Object-wise, (2) Image-wise, and (3)
Grasp-wise.
Object-wise Instruction. To begin with, we manually cat-
egorized the objects into 75 distinct categories based on
their inherent characteristics. This categorization allows us to
establish a systematic framework for generating instructions
tailored to each category. We employ the instruction "Grasp
the [object name]" for each object to obtain the INSTRUCTION-
NAME component.

To generate more object-wise instructions, we employ
the advanced language model GPT-4 Vision, leveraging
its powerful natural language processing capabilities. By

utilizing GPT-4 Vision, we are able to generate two crucial
components for each object category: INSTRUCTION-SHAPE
and INSTRUCTION-PURPOSE.
• The INSTRUCTION-SHAPE component describes the geo-
metric attributes of the objects, encompassing shape-adjectives
such as "cylindrical", "rectangular", "round", and "flat". This
information provides the robotic system with a precise
understanding of the object’s physical properties.
• The INSTRUCTION-PURPOSE component elucidates the real-
world significance and function of the objects. By conveying
the meaning behind the objects, the instructions facilitate
a higher level of comprehension for the robot, enabling it
to better interpret human intentions and adapt its actions
accordingly.

Drawing inspiration from the work of RT-Grasp [22], we
further develop the INSTRUCTION-STRATEGY component,
which outlines effective grasping techniques specific to each
object category, based on human knowledge and expertise.
These strategies serve as valuable guidance for the robotic
system, ensuring efficient and successful grasping operations.
Image-wise Instruction. For each image in our dataset, we
employ GPT-4 Vision to generate the INSTRUCTION-COLOR
component. The INSTRUCTION-COLOR component serves
to illustrate the color of the object depicted in the image.
We utilize color-adjectives such as "blue", "orange", and
"beige" to accurately describe the object’s color. In cases
where the object exhibits multiple colors, we strive to provide
comprehensive descriptions by using multiple color-adjectives
or phrases such as ‘with [color] details’. This approach



Object-wise Instruction
[NAME]

[SHAPE]

[PURPOSE]

Image-wise Instruction

Grasp-wise Instruction

[STRATEGY]

[POSITION]

[COLOR]

[ANGLE]

[PART]

Data Augmentation  

CROP

ROTATE

TRANSLATE

Grasp the [remote control].

Grasp the [rectangular] object with button.

Grasp the object for [controlling the TV].

Grasping [along its longest side ensures stability. The gripper

should be oriented perpendicular to the control's length].

Grasp the object [in the center of the image]. Grasp center point coordinates: [X, Y] Grasp rotation angle in radians: 𝜃.

Grasp the [black] object. Grasp center point coordinates: [X, Y] Grasp rotation angle in radians: 𝜃.

Grasp the object [with a rotation angle of [a_156] radians]. Grasp center point coordinates: [X, Y] Grasp rotation

angle in radians: 𝜃.

Grasp the [handle of] the object. Grasp center point coordinates: [X, Y] Grasp rotation angle in radians: 𝜃.

Fig. 2: The pipeline of constructing INSTRUCT-GRASP. Here we designate ( ) as human while the ( ) as the GPT-4
Vision.

Instruction for Single Object

Angle: "Grasp the object with a rotation angle of [A
ENCODED] radians. Grasp center point coordinates:
[X, Y]."

Part (GPT-4 Vision): "Grasp the handle of the brush.
Grasp center point coordinates: [X, Y] Grasp rotation
angle in radians: [A ENCODED]."

Fig. 3: The input instruction for single object grasping scene.

ensures that the instructions encompass all relevant color
information, enabling the robotic system to perceive and
differentiate objects based on their color attributes.

Additionally, we manually generate the INSTRUCTION-
POSITION component based on the spatial location of the
object within the image. By dividing the image into nine
sections—using terms such as "middle", "top", "bottom",
"left", and "right", we establish a framework for generating
instructions that convey the object’s precise location.
Grasp-wise Instruction. For each grasp in every image, we
still harness GPT-4 Vision to generate the Instruction-Part
component. The INSTRUCTION-PART component illustrates
which specific part of the object should be grasped. By
generating these detailed instructions, we enable the robotic
system not only to grasp the object as a whole but also
to target and manipulate specific parts of the object with
accuracy and dexterity. This capability enhances the system’s
overall grasping versatility, allowing it to perform complex
tasks that require interaction with specific object components.

Additionally, we create the INSTRUCTION-ANGLE com-
ponent, which is formatted as "Grasp the object with a
rotation angle of xxx radians." These instructions enable us
to incorporate the functionality of specifying a precise angle
before initiating the grasping action. By providing explicit
guidance on the desired rotation angle, we empower the
robotic system to perform grasping maneuvers with enhanced
precision and control. The corresponding detailed prompt
templates for both INSTRUCTION-PART and INSTRUCTION-
ANGLE construction can be found in Figure 3.

Multi-object Instruction. After completing the aforemen-
tioned steps, we obtain the INSTRUCT-GRASP-SINGLE
dataset. To expand the scope and complexity of the dataset,
we employ a random selection process. For each image
in the dataset, we randomly select three additional images.
We then combine these four images, positioning them at
the four corners of a larger composite image, which has
dimensions of 448 × 448 pixels. Subsequently, we resize
the combined image to a standardized size of 224 × 224
pixels, while keeping the instructions for each individual
image unchanged. Notably, we adapt the INSTRUCTION-
POSITION component to align with the revised layout of
the composite image. By following this process, we obtain
the INSTRUCT-GRASP-MULTI dataset. This expanded dataset
presents a more challenging and realistic scenario for the
robotic system, as it involves multiple objects placed in
various locations within a composite image. The dataset
facilitates the development and evaluation of algorithms and
models capable of handling complex multi-object grasping
tasks. The corresponding detailed prompt templates for
constructing multi-object instruction can be found in Figure 4.

Finally, we create the INSTRUCT-GRASP dataset,
which comprises the INSTRUCT-GRASP-NON dataset, the
INSTRUCT-GRASP-SINGLE dataset, and the INSTRUCT-
GRASP-MULTI dataset. This comprehensive dataset encom-
passes a total of 250k unique language-image non-instruction
samples and 1.56 million instruction-following samples.
Among these instruction-following samples, 654k pertain
to the single-object scene, while the remaining 654k relate
to the multi-object scene.

III. INSTRUCT-FOLLOWING TUNING FOR ROBOTIC
GRASPING

KOSMOS-E is a multimodal large language model inte-
grated with strong instruction-following abilities for grasping
in complex environments. The model can take instruction
data as input and predict the grasp actions.



Instruction for Multi Object

Name: "Grasp the [NAME]. Grasp center point
coordinates: [X, Y]."

Color: "Grasp the [COLOR] object. Grasp center
point coordinates: [X, Y] Grasp rotation angle in
radians: [A ENCODED]."

Shape: "Grasp the [SHAPE] object with buttons.
Grasp center point coordinates: [X, Y] Grasp rotation
angle in radians: [A ENCODED]."

Purpose: "Grasp the object for [PURPOSE]. Grasp
center point coordinates: [X, Y] Grasp rotation angle
in radians: [A ENCODED]."

Position: "Grasp the object [POSITION] in the section
of this image. Grasp center point coordinates: [X, Y]
Grasp rotation angle in radians: [A ENCODED]."

Strategy: "It is rectangular and has a flat side with but-
tons. Grasping along its longest side ensures stability.
The gripper should be oriented perpendicular to the
control’s length. Grasp center point coordinates: [X,
Y] Grasp rotation angle in radians: [A ENCODED]."

Fig. 4: The input instruction for multi objects grasping scene.

A. Problem Formulation

The problem of robotic grasp detection involves finding a
successful grasp representation for a given object image. As
shown in Figure 5 (a), a commonly adopted grasp representa-
tion in previous works [23] is XYWHA, which is represented
as a five-dimensional entity as g = f(x, y, h, w, θ). Here,
(x, y) represents the grasp center in image coordinates, w
signifies the distance between parallel plates, h denotes the
height of parallel plates, and θ represents the gripper’s rotation
angle relative to the horizontal axis.

In this work, following RT-Grasp [22], we assume that
w corresponds to the maximum width of the gripper and
h corresponds to the height of parallel plates for a specific
robot, and thus adopting the representation named XYA ,
which is shown in Figure 5 (b)

In this work, which primarily focuses on assessing the
effectiveness of MLLMs in robotic grasping tasks and
exploring the role of grasping instructions, we make the
assumption that w corresponds to the maximum width of the
gripper, while h corresponds to the height of parallel plates
for a specific robot in the real-world scenario, and finally
adopt XYA shown in Figure 5 (b) as the representation format
of output grasp information for KOSMOS-E.

Additionally, we applied a linear encoding to map the
original rotation angle from the interval of [-π2 , π

2 ] to the
range of [0, 255] as the input. Subsequently, we will decode
the predicted encoded value back to radians as the output.
The ultimate grasp representation is denoted as g = (x, y, θ),
where (x, y) corresponds to the pixel position of the center
point in the image, and the rotation angle θ is expressed
in encoded radians, ranging from [0, 255], as illustrated in
Figure 5. Moreover, we divided the grasp data into two
separate components: one related to the center point and the

(𝒙, 𝒚)

θ

(𝒙, 𝒚)

θ θ

(𝒙𝟏, 𝒚𝟏)

(𝒙𝟐, 𝒚𝟐)

θ

(𝒙𝟐, 𝒚𝟐) = (3, 𝟎) 𝒙

𝒚

(𝟒, 𝟑)

(𝒙𝟏, 𝒚𝟏) = (5, 𝟓)

(a) XYWHA (b) XYA (c) TLBRA (d) TLBRA†

Fig. 5: Illustration of different grasp representations. In
our KOSMOS-E, we adopt XYA as the grasp information
representations.

other related to the rotation angle, which doubled the number
of image-text pairs.

Furthermore, we have conducted a thorough analysis of
the performance differences between two types of grasp
representations, namely "XYWHA" and "XYA". Additionally,
we have investigated the impact of encoding the rotation
angle and splitting the grasp data into two components. For
detailed comparisons, please refer to Section 4.3.

B. Robotic Grasping Multimodal Model

KOSMOS-E is based-on a transformer causal language
model and trained through the autoregressive language
modeling task. Following the architecture of KOSMOS-1 [3],
the training loss only considers discrete tokens, such as text
and grasp tokens. As shown in Figure 1, the input image is
encoded by a vision encoder, such as CLIP [25], and take the
output of the last layer as the image representation (image
embedding). The image representation is then combined with
the text tokens and grasp tokens, and fed into the multimodal
transformer model. Taking Figure 1 as an example, the input
of the multimodal transformer model is:

<s><image> Image Embedding </image>Grasp
the [Specific Angle or Part] of this object. Grasp center
point coordinate: [MASK], Grasp rotation angle in
radians: [MASK] </s>.

The model is trained to predict the next token in the sequence
given the previous tokens. The training loss is computed based
on the cross-entropy loss between the predicted token and
the ground truth token.

C. Training

KOSMOS-E is trained upon INSTRUCT-GRASP dataset. The
training procedure involves a batch size of 2,048 tokens and
30,000 training steps, utilizing approximately 11.8 billion
tokens. We use an AdamW optimizer with β = (0.9, 0.98), a
weight decay of 0.01, and a dropout rate of 0.1. The learning
rate increases to 2e-4 during the first 375 warm-up steps and
linearly decays to zero. The model is trained on one DGX2
node for 12 hours.

KOSMOS-E uses the weights of KOSMOS-2 for initial-
ization, and follows it architecture settings. The vision
encoder has 24 layers with 1,024 hidden size and 4,096
FFN intermediate size. The multimodal large language model
component is a 24-layer MAGNETO Transformer [26] with
2,048 hidden dimensions, 32 attention heads, and 8,192 FFN
intermediate size. The total number of trainable parameters
amounts to approximately 1.6B. The image resolution is set



to 224×224 and the patch size is 14×14. We update all the
parameters during training.

D. Evaluation Metric

In line with previous studies, we adopt a cross-validation
methodology and divide the datasets into five folds to evaluate
our approach. We employ both image-wise and object-wise
splits for comprehensive evaluation.
Image-wise split: The image-wise split involves randomly
dividing all the images in the dataset into five folds. This
partitioning allows us to assess the generalization ability of the
network concerning objects presented in different positions
and orientations.
Object-wise split: With the object-wise split, we randomly
divide individual object instances, ensuring that all images
featuring a particular object are placed in the same validation
set. This separation enables us to evaluate the network’s
generalization performance on previously unseen objects.

For grasp detection, we utilize the rectangle metric [27] to
report the system’s performance. According to this metric, a
grasp is deemed valid if it satisfies the following conditions:

• The difference in grasp orientation between the predicted
grasp gp and the ground truth grasp gt is less than 30
degrees.

• The intersection over union (IoU) score between the
predicted grasp gp and the ground truth grasp gt is
greater than 25%, where the IoU score is computed as
IoU (gp, gt) =

|gp∩gt|
|gp∪gt| .

To ensure accurate evaluation, the rectangle metric neces-
sitates a grasp representation with the width w and height
h of the grasp rectangle, which are not directly provided by
our method’s grasp prediction. Therefore, we combine the
ground truth width w and height h to form the appropriate
rectangle representation for evaluation purposes.

IV. EXPERIMENTS

A. Non-instruction Grasping

Experiment Settings. Following [22], we evaluate the
proposed method and two types of comparable baselines:
(1) Traditional grasping algorithms GR-ConvNet [28] and
GG-CNN2 [29], which utilizing RGB-D images as training
input, as well as (2) MLLMs-based grasping algorithms RT-
Grasp [22], using the reasoning tuning VLM grasp dataset
proposed in [22]. We take grasp prediction accuracy including
image-wise and object-wise as our evaluation metric defined
in [22]. We follow a cross-validation setup as in previous
works and partition the datasets into 5 folds.
Experiment Results. The main results are presented at
Table I. In terms of image-wise evaluation, our method
outperforms grasp detection algorithms based on MLLMs
and the conventional GG-CNN2 approach. Regarding object-
wise evaluation, our model exhibits better performance
compared to RT-Grasp. It is noteworthy that our method
demonstrates significantly lower variance than RT-Grasp,
indicating enhanced stability. These outcomes affirm the
efficacy of our method in real-world object grasping scenarios.

TABLE I: Results of Non-Instruction Grasping experiments.

Method Modality Grasp Accuracy

IW OW

GR-ConvNet [28] RGBD 97.70 96.60
GG-CNN2 [29] RGBD 84.00 82.00
RT-Grasp [22] (Numbers Only) RGB+text 58.44±6.04 50.31±14.34
RT-Grasp [22] (With Prompts) RGB+text 69.15±11.00 67.44±9.99

KOSMOS-E RGB+text 85.19±0.27 72.63±4.91

B. Instruction-following Grasping

Experiment Settings. Detailed in Section II, we constructed
a novel dataset for instruction-following grasping, encom-
passing both single-object and multi-object scenarios. Various
datasets were utilized to train the baseline models. Specifically,
our model was trained using a combination of non-instruction
and instruction-following datasets. In contrast, four other
baselines were each trained on a distinct dataset: non-
instruction, single-object, multi-object, and a combination
of single-object and multi-object datasets. We adopted image-
wise grasp accuracy as our primary evaluation metric.
Experiment Results. The results of instruction-following are
summarized in Table II. Three key insights emerged from
the results. First, the multi-object dataset is more challenging
compared to the single-object dataset; the highest accuracy
achieved by our model on the multi-object dataset is below 40,
whereas for the single-object dataset, it exceeds 75. Second,
the absence of multi-object scenarios in the training data
severely hampers the model’s performance on such datasets.
This is evident from the significantly reduced accuracy for the
non-instruction and single-object instruction baseline models
on the multi-object dataset, with some categories registering
accuracy below 1. Third, the diverse grasping datasets appears
to be mutually beneficial. Our model outperforms in 6 out of
8 categories, suggesting that training on a more varied dataset
equips the model to better navigate complex scenarios.

C. Ablation Study

Grasp Representation. We investigated the impact of differ-
ent representations of grasp poses on the final experimental
results. Four distinct representations were explored: (1)
XYWHA: This representation utilizes the coordinates of the
center point, along with the width and height of the grasp
rectangle, to describe a grasp pose. (2) XYA: Similar to
XYWHA, but incorporates the ground truth width and height
for accurate evaluation. (3) TLBRA: Inspired by the KOSMOS-
2 approach, a grasp pose is determined using the coordinates
of the top-left and bottom-right corners, along with the
rotation angle. (4) TLBRA†: Similar to TLBRA, but encodes
the two-dimensional point (x, y) into a one-dimensional
numerical representation based on the patch number within
a 32×32 image grid, more details regarding the encoding
can be found in KOSMOS-2 [4]. The corresponding results
are presented in Table III. It was observed that employing
XYA as the input format generally yielded superior outcomes
compared to the other three representations.
Training Data Format. We investigated the effects of
different training data formats on model performance. One



TABLE II: Instruction-following Grasping
Single Object Multi Object

Angle Part Name Color Shape Purpose Position Strategy

KOSMOS-E 77.98 82.35 31.43 29.56 29.49 27.93 30.44 36.16
- non-instruction 79.16 76.80 0.42 4.80 1.48 0.42 7.34 2.47
- single instruction 78.27 80.28 0.49 0.35 0.35 0.46 0.35 0.85
- multi instruction 7.49 8.20 25.99 25.32 24.82 23.87 25.14 27.22
- single & multi instruction 78.02 80.92 30.23 30.12 28.46 27.23 29.69 33.58

TABLE III: Comparison of different
grasp representations.

Fomat Accuracy

XYA 68.74
XYWHA 65.59
TLBRA 51.16
TLBRA† 51.60

TABLE IV: Impact of different training data format.
Individual Output Angle Encoding IW OW

✓ ✓ 73.67±1.39 55.11±5.61
✓ ✗ 67.01±0.18 55.60±7.16
✗ ✗ 64.87±0.60 52.39±7.90

TABLE V: Different training strategy.
Training Strategy Angle Encoding IW OW

Target Only ✗ 68.24 44.70
✓ 71.19 49.91

Full Instruction ✗ 68.74 51.10
✓ 71.56 49.97

aspect of this exploration involved determining whether to
output all grasp actions together or to output each attribute
individually for each instructional data point. Additionally, we
examined the impact of angle encoding variations, specifically
comparing the direct use of angles within the range [-π2 , π

2 ]
against a bucketed encoding transformed to the range [0,
255]. The comparative analysis of these training data formats
and angle encoding strategies is presented in Table IV. We
can observe that separately output the attributes for each
instruction data point and using the bucketed encoding for
angles both lead to improved model performance.
Training Strategy. To investigate the effect of training
loss format on the performance of the model, comparative
experiments are conducted. Table V shows that (1) only target
for loss computation and computing loss for all text tokens
does not significantly impact the final performance of the
model. Calculating loss for all text tokens typically only
yields minor performance improvements in most cases. (2)
Employing angle encoding format can substantially enhance
model performance. For instance, utilizing only target loss
resulted in a 5.21 improvement in object-wise performance.
Training Data Size. Our investigation into the data scalability
of KOSMOS-E involved augmenting the training dataset size.
As detailed in Section II, we employed various rotations
and translations of the images, effectively expanding the
initial dataset size from 46k to 102k samples. The results,
presented in Figure 6, demonstrate that enlarging the training
set enhances the downstream performance of KOSMOS-E in
both image-wise and object-wise evaluations. Notably, the
performance enhancements are more pronounced when the
dataset size grows from 46k to 80k samples. Beyond this
point, however, the improvements get marginal, indicating
that the model has reached its capacity to learn from the data.

V. CASE STUDY

We do case studies of KOSMOS-E for each type of
instruction in our proposed INSTRUCT-GRASP. As shown in
Figure 7, we find that our KOSMOS-E demonstrates a robust

Fig. 6: KOSMOS-E trained on larger size of training data
performs better. We evaluate KOSMOS-E of varying training
data sizes on both image-wise (IW) and object-wise (OW)
grasping accuracy, and find that accuracy increases with larger
training data size across both wises, indicating the strong
training scalability of KOSMOS-E.

instruction-following capability to comprehend user-provided
instructions, thereby facilitating more flexible and effective
grasping actions that closely align with real-world application
scenarios.

For example, look at Figure 7 (b), KOSMOS-E is adept
at understanding the user’s intention, as exemplified by the
instruction to “Grasp the object for providing elevation to the
wearer’s feet.” It can infer that among the four objects present
in the scene, the water cup located in the bottom left corner
best meets the user’s requirement and proceeds to grasp it.
This capability is highly applicable in real-world complex
scenarios, i.e., by merely inputting our demand through an
instruction, the model can accurately fulfill the grasping task
without the need for pre-designed complex and redundant
grasping rules. This not only simplifies the grasping process
but also enhances the robustness of the operation.

Another example shown in Figure 7 (e), illustrates our
KOSMOS-E’s ability to grasp specific parts of an object
based on the user’s instruction, thereby achieving a more
stable and effective grasp for subsequent actions. For instance,
through an instruction, we can direct the robotic arm to
grasp the handle of a spoon (rather than any arbitrary part).
This precision enables the correct execution of subsequent
operations, such as using the spoon to scoop food.

The strong instruction-following functionality underscores
KOSMOS-E’s proficiency in interpreting user instructions to
facilitate precise and practical manipulations, essential for
complex and nuanced tasks.



Grasp the round and ovate object 
with a brown or yellowish skin.

User

KOSMOS-E

Grasp center point coordinates: [67, 44],
Grasp rotation angle in radians: -0.1227

Final Grasping v.s. Ground truth

Grasp the object for providing 
elevation to the wearer's feet, 
often worn by women.User

KOSMOS-E

Grasp center point coordinates: [69,155],
Grasp rotation angle in radians: -0.0859

Final Grasping v.s. Ground truth

(a) Shape (b) Purpose

Grasp the brown object.
User

KOSMOS-E

Grasp center point coordinates: [160,55],
Grasp rotation angle in radians: -0.8345

Final Grasping v.s. Ground truth

Grasp the object in the bottom 
right section of this image.

User

KOSMOS-E

Grasp center point coordinates: [161,172],
Grasp rotation angle in radians: -0.06135

Final Grasping v.s. Ground truth

(c) Color (d) Position

Grasp the left lens of the 
swimming goggles.

User

KOSMOS-E

Grasp center point coordinates: [53,112],
Grasp rotation angle in radians: -1.5339

Final Grasping v.s. Ground truth

Grasp the object with a rotation
angle of [a_156] radians.

User

KOSMOS-E

Grasp center point coordinates: [92, 125],
Grasp rotation angle in radians: 0.3436

Final Grasping v.s. Ground truth

(e) Part (f) Angle

Grasp the box.
User

KOSMOS-E

Grasp center point coordinates: [169,182],
Grasp rotation angle in radians: 0.9572

Final Grasping v.s. Ground truth

It is usually round and flat. Grasping its edge 
provides a stable hold. Gripper rotation can be 
orthogonal to its curvature edge.User

KOSMOS-E

Grasp center point coordinates: [165,83],
Grasp rotation angle in radians: -1.2640

Final Grasping v.s. Ground truth

(g) Name (h) Strategy
Fig. 7: Case study for KOSMOS-E. The examples include all types of instructions in INSTRUCT-GRASP. In each subgraph,
red grasping box denotes the “Final Grasping” predicted by KOSMOS-E while blue ones denote the “Ground truth”.

VI. RELATED WORK

A. Robotic Grasping
Robotic Grasping have been widely studied in past years

with two main kinds: Traditional Robotic Grasping [30],
[31] and Learning-based Robotic Grasping [22]. Traditional
methods [32], [33], [34], analyze the geometry of the object
and the gripper to propose and evaluate a grasping pose,
but encounter limitations in real-world applications owing
to their lack of reasoning capabilities [22]. Learning-based
methods [35], [36], [37] use CNN-based architectures to
predict the grasp pose and achieving accuracy. However,
most of them fail to generalize to unseen object categories
and hard to be utilized in real-world scenario.

Recently, Large Language Models (LLMs) have been suc-
cessfully applied in various robotic tasks, e.g., reasoning [5],
[38], planning [39], [40], manipulation [14], [15] as well as
grasping [22], [41]. LAN-grasp [41] combines a traditional
grasp planner with LLMs to generate grasps, demonstrating a
deeper semantic understanding of the objects. RT-Grasp [22]
empowers LLMs to generate instructed precise numerical
outputs such as grasp poses, breaking the gaps between text-
based planning and direct robot control utilizing LLMs. The
works did not address the instruction-following capabilities
of MLLMs. When empowered with the ability to follow
instructions, the model is equipped to manage more complex
robotic grasping scenarios and to interpret human commands

with greater accuracy.

B. Language Models for Robotic Manipulation

Language Models are shown to have valuable knowledge
for robot manipulation [14], [15], [16] through reasoning and
planning. For instance, VoxPoser [14] addresses robotic ma-
nipulation problems by LLMs and Vision-Language Models
(VLMs) to synthesize robot trajectories in free-form natural
language instructions, addressing the bottleneck of reliance
on pre-defined motion primitives in existing approaches. RT-
2 [19] express the actions as natural text tokens, showing a
better generalization and reasoning ability. Similarly, notable
efforts like SayCan [17] and Palm-E [18] utilizes multi-modal
language models and trained on robot manipulation data, so
that the agents process visual input and relay precise robotic
motor control commands.

VII. CONCLUSION

With the growing focus on utilizing large pre-trained
models in robotic-related field, a comprehensive exploration of
leveraging the instruction-following capabilities of large mod-
els to better assist downstream tasks in the field of robotics
represents a crucial research area for the future. In this work,
focusing on the robotic grasping task, we present KOSMOS-E,
a multimodal large language model trained on our proprietary
robotic grasping instruction dataset INSTRUCT-GRASP, thus
being integrated with strong instruction-following abilities and



demonstrating enhanced grasping performance. We verified
its efficacy on robotic grasping tasks through extensive exper-
iments, and thus validates the effectiveness of incorporating
instruction-following capabilities in the field of robotics.
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