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Fig. 1. We propose a hierarchical closed-loop controller to help a mobile robot automatically open various doors and walk through them in open
environments. Our method can robustly generalize to different handles in the wild.

Abstract— Robots operating in unstructured environments
face significant challenges when interacting with everyday
objects like doors. They particularly struggle to generalize
across diverse door types and conditions. Existing vision-based
and open-loop planning methods often lack the robustness
to handle varying door designs, mechanisms, and push/pull
configurations. In this work, we propose a haptic-aware closed-
loop hierarchical control framework that enables robots to
explore and open different unseen doors in the wild. Our
approach leverages real-time haptic feedback, allowing the
robot to adjust its strategy dynamically based on force feedback
during manipulation. We test our system on 20 unseen doors
across different buildings, featuring diverse appearances and
mechanical types. Our framework achieves a 90% success rate,
demonstrating its ability to generalize and robustly handle
varied door-opening tasks. This scalable solution offers po-
tential applications in broader open-world articulated object
manipulation tasks.

I. INTRODUCTION

Deploying robot systems in open environments has long

been a key challenge in robotics, requiring solutions for
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unstructured settings and varied object types. Generalizing

to complex tasks like door opening is particularly difficult

due to the diverse designs, mechanisms, and conditions of

articulated objects. Researchers have explored this through

kinematics-based methods that depend on known door mod-

els [1], [2], [3], as well as end-to-end learning methods

that generalize to visually similar doors [4], [5], [6], [7].

More recently, large language models (LLMs) and vision-

language models (VLMs) have been used for high-level

planning, enabling robots to execute long-horizon tasks like

door-opening in new environments [8], [9], [10], [11].

Despite successes, these approaches are often limited by

their reliance on visual data and predefined models, making it

difficult to adapt to diverse and unstructured settings. Robots

still struggle to address non-visual properties, such as internal

mechanisms or unexpected resistance. For example, a robot

might need to discern when to pull rather than push or when

to rotate a handle in an unconventional direction—tasks that

require immediate adaptation to unanticipated scenarios.

While current methods, especially those reliant on open-

loop control, face difficulties generalizing to these scenarios,

humans effortlessly solve them using an explore-and-adapt

strategy based on haptic feedback. They adjust actions like

switching between pushing and pulling, and achieve nearly



100% success rates. Inspired by this capability, we pose the

question: Can robots similarly learn to explore and adapt

to manipulation tasks using haptic feedback?

To address this, we propose a haptic-aware closed-loop

control framework that combines vision-based perception

with real-time haptic feedback. Our haptic perception mod-

ule, using joint current readings and gripper resistance,

dynamically adapts to non-visual properties like unexpected

resistance, ensuring robust performance where visual data

alone may be insufficient. Our vision module, trained on a

small and easily accessible dataset, generalizes effectively

to unseen door types with minimal adaptation, reducing

the need for large-scale real robot data collection. This

combination enables accurate grasp pose predictions and

enhances performance in unstructured environments.

Field tests on 20 unseen doors across a university campus

showed a 40% improvement in success rate over baseline

methods, demonstrating the effectiveness of integrating hap-

tic feedback into a closed-loop control system. These results

highlight the power of combining vision-based perception

and real-time haptic feedback to substantially enhance a

robot’s ability to generalize and adapt in complex, real-world

environments. In the long term, this work contributes to

more adaptable, general-purpose robots capable of perform-

ing various tasks in unpredictable settings. The combination

of vision-based perception and haptic feedback offers a

path toward more autonomous robots, capable of operating

independently in real-world scenarios that require both gen-

eralizable perception and dynamic adaptability.

II. RELATED WORKS

A. Door manipulation systems

Manipulating articulated objects, such as doors and draw-

ers, is a fundamental skill for robots in domestic environ-

ments [12], [13], [14]. Various methods have been proposed

for door-opening tasks. Kinematic-based approaches [1], [2],

[3] assume knowledge of the door’s model or use online

system identification, while geometric-based methods [15],

[16] extract 3D pose information to generate trajectories.

Although effective with accurate priors, these methods strug-

gle to generalize across different shapes and environments.

Keypoint-based approaches [17] mitigate this but face data

collection challenges due to their reliance on RGB-D data.

End-to-end imitation learning (IL) and reinforcement

learning (RL) [4], [5], [6], [7] have also been applied to ma-

nipulation tasks, though RL-based methods often face issues

when transferring from simulation to real-world tasks[18],

[19]. Newer pipelines combine IL and RL to fine-tune

policies on real robots [20]. More recently, LLMs and VLMs

have been applied to long-horizon manipulation tasks [8],

[9], [10], [11], with LLMs serving as high-level planners

and VLMs handling both visual perception and planning.

We will compare our performance to a large-model baseline

in Section IV.

Our approach integrates real-time haptic feedback into

a closed-loop control framework, allowing robot dynamic

adaptation to non-visual properties. In contrast to methods

requiring large amounts of data or pre-defined models, our

system uses vision models trained primarily on a small set of

Internet RGB images, which generalizes effectively to real-

world doors. By leveraging Dynamic Movement Primitives

(DMPs), we further reduce the need for expert demonstra-

tions, improving the system’s adaptability in unstructured

environments.

B. Haptic feedback control

Humans rely heavily on haptic and tactile feedback

when manipulating objects, allowing them to perform some

contact-rich tasks without visual guidance. Inspired by this,

the robotics community has explored haptic and tactile

sensors and feedback systems for decades [21], [22], [23],

enhancing robotic manipulation by providing information

about contact forces, geometry, and textures.

For articulated object manipulation, particularly door

opening, [24] uses adaptive velocity control based on

force/torque feedback to manage uncertain kinematics. Sim-

ilarly, [25] employs force/torque sensors to detect door

states or classify door types, compensating for vision-based

limitations. Other work [23] combines tactile and visual data

to improve decision-making. Recent efforts, such as [26] and

[27], incorporate haptic feedback into reinforcement learning

(RL) to enhance manipulation policies.

Despite their effectiveness, tactile sensors and force/torque

systems are expensive, difficult to implement, and often too

fragile for tasks like door opening. In contrast, our closed-

loop system leverages low-cost motor current data for haptic

feedback, providing a practical and adaptable solution for

various door types and conditions.

III. METHODS

We propose a hierarchical control framework for the

door-opening task. This framework consists of a high-level

feedback planner that coordinates the robot’s actions with

six low-level motion primitives. Some of these primitives are

supported by vision and haptic perception modules to form a

closed-loop control system, allowing the system to perform

real-time exploration and adaptation to the environment.

A. High-level controller

Our high-level controller plans the sequence of motion

primitives, which are executed through the low-level con-

troller. The high-level controller considers the feedback from

the low-level controller, which might include the operation

result and the key parameters. We employ a state machine

as a controllable, interpretable, and data-efficient solution

for high-level planning, as illustrated in Fig. 2. The state

machine defines possible states and transitions, clustered by

the corresponding motion primitives. Compared to previous

works utilizing learning-based high-level policies [20], our

method is much more data efficient. Moreover, the transitions

incorporate feedback from the low-level controllers, allowing

for more effective error handling during experiments.



Fig. 2. We design a state machine as the high-level planner. Aside from regular working transitions, we define error-handling transitions to recover from
unexpected scenarios. For example, when OPEN COLLISION is triggered due to collision in the open primitive, the robot then transitions back to grasp.

B. Low-level controller

We design six motion primitives based on the key steps

of opening doors and implement them through low-level

controllers. This reduces the dimensionality of the action

space and avoids reliance on extensive human expert data.

1) Approach: This primitive navigates the robot to move

towards the target door until it reaches a proper position for

operating the door handle. The robot starts with detecting the

door and fits a plane of the door surface using RANSAC [28].

The result provides information on the door’s 3D location

and the distance to the door. The robot then moves to a

preset position relative to the door. This primitive does not

trigger error feedback.

2) Grasp: We define grasp as the primitive of grasping

door handles, consisting of the detection of a proper grasp

point and performing the grasp motion.

To detect the grasp point, we first want to locate the

door handle. We use pre-trained vision models, Detic [29]

and Segment Anything [30] (SAM), to provide the type

of handle and a mask of the handle area on the image.

Based on the handle type and shape, we need to refine the

grasp point on the handle further, which should be a good

position to operate the handle. We introduce the Grasping-

and-Unlocking Model (GUM) model to fine-tune the grasp

point, which is detailed in Sec. III-C. The grasp orientation is

determined based on the mask geometry and normal vector,

followed by the execution of DMPs to reach the pose while

avoiding potential collisions.

During the execution, the system may encounter two

errors: GRASP IK FAIL occurs if inverse kinematics fail for

the predicted pose. GRASP MISS occurs if the robot fails to

grasp the handle, detected by low resistance in the gripper.

Both errors trigger a state machine transition back to the

approach primitive for re-execution.

3) Unlock - Lever: This primitive allows the robot to

unlock a lever-shaped handle by generating a circular tra-

jectory based on the grasp pose, rotation axis, and radius

predicted by GUM during the grasp phase. Joint motor

current feedback is monitored throughout this process. A

large current reading indicates a large impedance force from

the handle, which is typically caused by the wrong direction

of rotating or the door being locked. Then the robot tries

to rotate the handle in the opposite direction. Details of this

mechanism are discussed in Sec. III-D.

During this primitive, two error types may be triggered:

UNLOCK MISS occurs if the gripper loses contact with the

handle. UNLOCK COLLISION occurs if the gripper collides

with the door or becomes obstructed, indicates by spiking

joint motor current readings.

4) Unlock - Knob: This primitive is designed for unlock-

ing doorknobs and follows a procedure similar to that of

unlock-lever, albeit with different constraints for trajectory

generation. Joint motor current feedback and a halting thresh-

old ensure safe and efficient unlocking, with error feedback

mechanisms similar to those in the unlock-lever primitive.

5) Open: After successfully grasping and unlocking the

door handle, the open primitive targets at opening the door

by pushing or pulling the handle in the gripper. The robot

initiates a slight backward motion to determine whether the

door is a push-type or pull-type based on haptic reading. The

corresponding pre-defined mobile base movement is then

executed to either push or pull the door open.

During this primitive, two errors may arise: OPEN MISS

occurs if the gripper loses contact with the handle

while opening, prompting a retry of the entire pipeline.

OPEN COLLISION occurs if the gripper collides with the

door, also leading to a transition back to the approach

primitive.

6) Traverse: This primitive enables the robot to pass

through doors. For push-type doors, the robot simply moves

forward to go through it. For pull-type doors, a pre-defined

sequential bimanual trajectory is executed after pulling the

door to keep the door fully open, ensuring safe traversal. No

error feedback is associated with this primitive.



Fig. 3. Overview of GUM. GUM refines the model-based grasp pose prior
for the grasp primitive, and simultaneously predicts the motion trajectory
for unlocking the door handle.

C. Grasping-and-Unlocking Model

We propose the Grasping-and-Unlocking Model (GUM)

to precisely detect the grasp point on the door handle and

the potential motion trajectory to rotate the handle from the

RGB input. This information is essential for the grasp and

two unlock primitives.

GUM takes the raw RGB image and object mask from

Detic and SAM as input, utilizes a pre-trained ResNet-18

backbone to encode the inputs, and a 3-layer MLP to predict

three key values: the 2D offset from the mask centroid

to the new grasp point (dx,dy), and rotation parameter R.

The sign of R indicates the unlocking direction (clock-

wise/counterclockwise), while the magnitude represents the

radius of rotation. Fig. 3 shows the overall architecture.

To train GUM, we create a dataset of 1,303 images

featuring various door handles, collected from the Internet

and real-world photos. The dataset includes four common

handle types: lever handles, doorknobs, crossbars, and cab-

inet handles. Based on object masks generated by Detic

and SAM, we manually label the appropriate grasp point

and rotation parameters on the images. This data collection

process ensures the model’s generalizability by including a

large collection of different handles, also avoids the time and

labor cost of collecting data with a real robot.

D. Haptic feedback

As mentioned in Sec. III-B, we utilize haptic feedback

for rotation termination, grasping state determination, and

push/pull door classification. Unlike prior work using spe-

cialized force/torque sensors [25], we leverage cost-effective

joint current feedback and gripper resistance feedback.

For example, when the robot attempts to rotate a handle

that has reached its physical limit, the system, operating

in position control mode, continues applying force to over-

come the resistance, causing a spike in current readings,

particularly in the elbow joint (joint 4). As shown in Fig.

4, monitoring these current readings in real-time allows

the system to reliably detect the appropriate termination of

rotation. Preliminary tests established an appropriate current

threshold to differentiate these cases from collisions.

Similarly, during the classification phase in the open

primitive, we distinguish between push-type and pull-type

Fig. 4. Haptic feedback in 3 motion primitives. For unlock-lever and
unlock-knob, the current threshold for the elbow joint tells the robot when
to stop. For open the increase/decrease of current feedback on the elbow
joint shows the push-/pull-type of the door.

Fig. 5. Visual appearance and configurations of our bimanual mobile robot.

doors based on the distinct current signatures exerted on

the joints. We conduct extensive experiments to demonstrate

that this approach is both cost-efficient and effective for

manipulating objects of varying weights and sizes.

IV. EXPERIMENTS

In this section, we aim to answer the following questions:

• Does the system generalize to various door types in real-

world settings, given the limited size of the GUM train-

ing dataset?

• How effective is the integration of haptic and other

feedback modalities in the door-opening task?

• Can VLMs effectively serve as high-level planners or

robustly guide low-level motion?

A. Experiment setting

We choose the RealMan dual-arm compound robot [31]

as our hardware platform. As shown in Fig. 5, the robot is

equipped with two 7-DoF arms, each with a 5kg payload,



Fig. 6. Field test setting. We experimented with 20 environments on
the university campus. These scenes in the wild contain various door
appearances, handle types, physical properties, and visual distractions like
illumination. None of these scenes have been seen in our training dataset.

a mobile base, and a 2-DoF robot head with an Intel

RealSense D435 camera. Two DH PGI-140-80 grippers [32]

are mounted on the arms to handle the door-opening tasks.

We conducted an extensive field study on a university cam-

pus to evaluate the system’s efficacy. As shown in Fig. 6, Our

experiments encompassed 20 distinct doors distributed across

8 buildings. During each trial, the robot began from a random

position near the door with an initial pose that ensures

visibility of the door. The system operated autonomously

until it either completed the task or performed a potentially

hazardous action, defined as actions that could physically

damage the robot or environment. A trial is considered

successful if it opens the door to an angle greater than 45

degrees. Aside from doors, we also conducted experiments

on some other articulated objects with handles like cabinets

and drawers, as they share similar mechanisms. For drawers,

we consider the trial successful if it is fully opened.

B. Baseline

We employ Google Gemini 1.5 Pro [33] as our baseline

method. Previous works [8], [9], [10], [11] have demon-

strated that LLMs and VLMs can serve as high-level

planners, coordinating low-level motion primitives without

domain-specific expert data or extensive exploration. In our

setup, the VLM generates the next action based on prior

actions and error feedback, acting as a high-level planner.

Additionally, the VLM is used to predict grasp poses by

providing it with visual inputs, text prompts, and example

images, serving as an alternative to GUM. As a low-level

controller, we use the VLM in a few-shot in-context learning

manner: feeding it text prompts, visual observations with

masks, and task-specific input-output examples, and then

extracting predictions from its responses.

C. Overall success rate in field tests

We evaluate the 4 different combinations of high- and

low-level controllers by their success rate. For each method,

we test 5 trajectories per door, resulting in a total of 400

trajectories across all 20 doors.

TABLE I

OVERALL SUCCESS RATE

Method Crossbar Lever Doorknob Cabinet Avg

VLM+VLM 28% 28% 52% 92% 50%

SM+VLM 32% 52% 76% 92% 63%

VLM+GUM 64% 88% 92% 100% 86%

SM+GUM (Ours) 76% 92% 92% 100% 90%

As summarized in Table I, our method consistently outper-

forms other combinations, showing an average success rate

improvement from 50% to 90% across all manipulation tasks.

None of the doors nor the handles are seen in the training

set, proving our model’s generalizability across different

situations. Moreover, in the rare case of a missed grasp, our

state machine can often robustly recover from its failure,

while other methods cannot.

Despite the success rate improvement to the baseline

models, our model still fails in two specific cases: a door

with a C-shaped crossbar where no method succeeds even

once, and doors with large transparent areas, making its

plane model hard to estimate with RGB-D camera. The first

challenge arises from the inherent limitations of learning-

based methods, as our dataset is not large enough to cover all

shapes of handles, while detecting glass doors is a separate

research problem beyond the scope of this work.

In contrast, when using VLM as a few-shot alternative to

our GUM model, its performance is notably lower. On the

other hand, when VLM is used as the high-level planner,

it performs comparably to the state machine. Despite these

comparable results, the VLM exhibits several failure modes

when used as a high-level planner, particularly in:

• Lack of robustness: In some trials, VLM incorrectly

predicts the approach action immediately after grasp,

leading to task failures.

• Failure to integrate feedback: The VLM does not consis-

tently act on feedback from the previous action, which

results in inefficient or incorrect task execution.

Additionally, Table I shows that crossbar and lever-handle

types pose relatively greater challenges. To assess the impact

of each module, we conduct modular tests and ablation

experiments on a subset of 5 randomly sampled lever-handle

and crossbar doors.

D. Ablation: Evaluation of the GUM module

To verify how much GUM help the robot generalize its

grasp pose detection to various door handles, we compare

the system’s overall success rate under three conditions:

with GUM, with GUM∗, and with full GUM. The GUM∗

model is trained with only Internet images. As shown in

Table II, GUM drastically raised the success rate. It is also

worth noting that the model trained solely on Internet images

performed comparable to the full model, indicating that

GUM can help manipulation in the open world with easy-

to-get Internet RGB data.

Fig. 7 displays some failure cases without GUM. In these

instances, slight prediction biases in the 2D image inputs

result in significant 3D projection errors. Such error leads



Fig. 7. Examples of how GUM fixes bad grasp pose during our field test.

TABLE II

EFFECTIVENESS OF GUM

door1 door2 door3 door4 door5 sum

w/o GUM 0/5 2/5 3/5 0/5 0/5 20%

GUM∗ 4/5 5/5 5/5 5/5 5/5 92%

GUM 5/5 5/5 5/5 5/5 5/5 100%

to grasping failures, particularly when the robot approaches

non-convex handles or views from a side angle. While

GUM∗ can resolve most of these cases, it fails once during

testing. These results demonstrate the model’s effectiveness

in generalizing to diverse real-world scenarios.

E. Ablation: Impact of feedback control

TABLE III

OPEN VS. CLOSED LOOP

Method door1 door2 door3 door4 door5 sum

Open-loop 3/5 1/5 2/5 1/5 3/5 40%

Closed-loop 5/5 5/5 5/5 5/5 5/5 100%

We perform an ablation study to quantify the necessity

of closed-loop feedback planning in open-world environ-

ments. We compare our method with a simple open-loop

implementation that predicts the primitives at the beginning

and sequentially executes them. When the robot tries to

rotate or push/pull the door under this setting, we randomly

sample a rotation direction or push/pull type. In this open-

loop implementation, the robot stops when it either succeeds

or cannot proceed due to collision, failure to unlock, or other

unexpected behavior during execution.

Table III shows the quantitative results comparing perfor-

mance with and without feedback planning on 5 randomly

chosen doors. Without closed-loop feedback, the robot has

to guess the door’s rotation direction and push/pull type.

In contrast, the explore-and-adapt mechanism of our closed-

loop architecture significantly improves success rates in such

scenarios. Fig. 8 also illustrates how feedback prevents task

failures in several cases.

F. Ablation: Importance of haptic

To explore whether the information from haptic feedback

can be retrieved by visual input, we conduct an ablation

Fig. 8. With multi-modal feedback, our system can open the cabinet with
an unknown unlocking direction via explore-and-adapt.

study that replaces haptic feedback with predictions from

VLMs. In this experiment, we use the pre-trained CLIP

ViT-B/32 model [34] and Gemini 1.5 Pro [33] to classify

feedback types and the push/pull type of doors with solely

the visual appearance of the door. We then execute the

corresponding action during the experiment, particularly in

unlock primitives and open.

TABLE IV

VLM VS. HAPTIC

Method grasp unlock-L unlock-K open push / pull

CLIP 42.67% 33.33% 38.81% 15.79% 15.00%

Gemini 29.63% 93.75% 86.36% 88.89% 65.00%

Haptics 100% 100% 100% 100% 100%

Our results, shown in Table IV, indicate that VLMs are not

reliable for determining the state of motion primitives or door

types. The haptic-based method significantly outperforms the

vision-based models, further underscoring the importance of

haptic feedback for reliably manipulating unseen doors.

V. CONCLUSIONS

We present a haptic-informed closed-loop control sys-

tem for robust door-opening tasks in open environments.

By integrating real-time haptic feedback, our framework

enables mobile robots to dynamically adapt to non-visual

properties during manipulation, improving generalization to

unstructured, real-world scenarios. Additionally, our visual

perception module, trained on a small dataset of Internet

images, enables accurate grasp pose detection, allowing ef-

fective generalization to various door types without extensive

domain-specific training. Field tests show a success rate

increase from 50% to 90%, demonstrating the system’s

reliability in complex environments. In future work, we plan

to extend this framework to a wider range of manipulation

tasks, incorporating learning-based policies for enhanced

adaptability.
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